Addressing food waste gaps and environmental impacts using a material flow analysis approach

Gang Liu

Professor WSR

SDU Life Cycle Engineering

University of Southern Denmark

Email: gli@kbm.sdu.dk

Food loss and waste (FLW) accounting: System and data!

Food waste in a (mass balance consistency) systems context

SDI

IFE CYCLE

years (1933-2014) in 202 publications

How much do we know?

SDU

LIFE CYCLE

Geographical distribution of case countries with reported food wastage data

The number of publications covering different life cycle stages and different countries

Xue/Liu et al., 2017, Env. Sci. Tech.

And how good/consistent/reliable are they?

An overview of the methods used: literature data and proxy data (L/P), Food balance (F), Modelling (M), Garbage collection (G), Weighing and observations (W/O), Diaries and records (D/R), and Survey (S)

Over half of them based exclusively on literature...

SDI

Xue/Liu et al., 2017, Env. Sci. Tech.

FLW changes as country develops: case of cereals

SDU

LIFE CYCLE

Addressing data gaps: A first estimate for China

3557 tables in 195 restaurants in four case cities investigated

Restaurant food waste in the four Chinese cities

 \rightarrow Varies by cities, consumer groups, restaurant categories, and purposes of meals...

- \rightarrow Already close to the level of Nordic countries (5-15 kg/cap) (with a much lower GDP)
- \rightarrow Total restaurant waste of the 4 cities (1.3 Mt) \approx that of Germany (1.9 Mt).

SI

FLW of major agrifood products along the whole value chain in China

Efficiency of the German meat supply chain

LIFE CYCLE

Xue/Liu et al., 2019, Env. Sci. Tech.

Different scenarios of GHG emissions in a consumption-based accounting

(a) Reduction scenarios		Low					Medium					High				
		%	Cattle	Pork	Poultry	Total	%	Cattle	Pork	Poultry	Total	%	Cattle	Pork	Poultry	Total
S 1	Emission intensity	-5	-3	-3	-2	-3	-10	-6	-7	-5	-6	-20	-13	-14	-9	-13
S2a	Slaughtering PE	-5	0	0	0	0	-10	0	0	0	0	-20	0	0	0	0
S2b	Processing PE		0	0	0	0		0	0	0	0		0	0	0	0
S2c	S2a + S2b		0	0	0	0		0	0	0	0		0	-1	-1	0
S3a	Slaughtering byproducts	-5	-3	-1	-1	-2	-10	-5	-2	-2	-4	-20	-9	-4	-5	-7
S3b	Processing byproducts		-2	-1	-1	-1		-4	-2	-1	-3		-7	-4	-2	-5
S3c	S3a + S3b		-4	-2	-2	-3		-8	-4	-3	-6		-15	-8	-6	-11
S4a	Retail waste	-10	0	0	0	0	-25	-1	0	-1	-1	-50	-1	-1	-1	-1
S4b	Consumption waste		-2	-2	-2	-2		-5	-4	-6	-5		-10	-8	-10	-9
S4c	S4a + S4b		-2	-2	-3	-2		-6	-5	-6	-5		-11	-9	-11	-10
S5a	Animal import		0	0	0	0	-50	0	-1	0	0	-100	0	-2	-1	-1
S5b	Animal export		0	0	0	0		0	0	0	0		0	0	0	0
S5c	S5a + S5b		0	0	0	0		0	-1	0	0		0	-2	-1	-1
S5d	Meat products import	-25	0	0	0	0		1	1	0	1		2	2	0	2
S5e	Meat products export		-1	-3	-1	-2		-2	-6	-2	-4		-4	-12	-4	-7
S5f	S5d + S5e		-1	-2	-1	-1		-1	-5	-2	-3		-2	-10	-4	-6
S5g	S5c + S5f		-1	-3	-1	-2		-1	-6	-2	-3		-2	-11	-5	-6
S6	Meat consumption	-10	-7	-6	-7	-6	-25	-17	-14	-18	-16	-50	-34	-29	-35	-32
S 7	Beef consumption	-5	-3	0	0	-1	-10	-7	1	1	-3	-25	-17	2	2	-7
S8	Offal thrown away	-10	-4	-2	-1	-3	-25	-10	-5	-2	-7	-50	-20	-9	-4	-14

SD

Take-home message (if any)

System matters for food waste accounting and progress monitoring, and Material Flow Analysis (MFA) provides such a mass balance consistency framework to

Consolidate existing data and standardize method

- ✓ Benchmark the progress of SDG 12.3
- ✓ Cross check top-down and bottom-up estimates
- Conduct environmental and economic impact analysis

→ Getting serious about SDG12.3: An "IPCC" for food waste? (consistent accounting framework, global effort, regular update...)

REFRESH is funded by the Horizon 2020 Framework Programme of the European Union under Grant Agreement no. 641933

SI

of the People's Republic of China

